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Abstract. A recursive algorithm previously developed for carrying out renormalisation 
calculations for the A-state Potts model is generalised to the Z ( A )  model. The relations 
used are based on an expression we derive for the pair correlation function in terms of 
mod-A flows, which represents an extension of a similar result for the partition function 
previously obtained by Biggs. The use of flows enables us to prove and extend the formulae 
which appear in the break-collapse method of Mariz and co-workers. It is argued that 
the use of fixed-flow bonds rather than the precollapsed bonds used by the latter authors 
leads to a more efficient algorithm. 

1. Introduction 

The Z ( A )  model contains as particular cases many statistical models of well known 
theoretical and experimental relevance (e.g. bond percolation, random resistor 
networks, spin-4 Ising, A-Potts, discrete spin cubic, clock and classical X Y  models). 
During recent years, this model has been the subject of a considerable number of 
studies in both lattice gauge theory and statistical mechanics (Wu and Wang 1976, 
Elitzur et a1 1979, Savit 1980, Cardy 1980, Alcaraz and Koberle 1980, 1981, Alcaraz 
and Tsallis 1982, Mariz et a1 1985, Tsallis and Souletie 1986). 

The Z ( A )  model is identical to the Ising and three-state Potts model for A = 2 and 
3, respectively. For A 3 4 ,  the Z ( A )  model has a richer critical behaviour involving 
two or more interaction parameters. Several methods have been used to calculate its 
phase diagram which has three or more phases. One of these techniques, the break- 
collapse method (BCM),  was described for A = 4 (the symmetric Ashkin-Teller model) 
by Mariz et a1 (1985, hereafter referred to as MTF), for A = 6 by Mariz et a1 (1989), 
and for a general value of A by Mariz and Tsallis (private communication). This 
method is an extension of the BCM for the Potts model (Tsallis and Levy 1981, Tsallis 
1989) and it allows the exact calculation of the partition function and correlation 
functions of finite clusters which are used in renormalisation group procedures. The 
latter have been successfully used in the calculation of approximate critical frontiers 
and critical exponents of the Z( A ) model ( MTF, Tsallis and Souletie 1986, de Souza 
1988, Mariz 1989, Mariz et a1 1989). In the case of 2(4) ,  both pure (isotropic or 
anisotropic) and random ferromagnetic (or antiferromagnetic) models on the square 
and cubic lattices have been considered. For Z(6),  existing calculations are restricted 
to the ferromagnetic model on the isotropic square lattice. 
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2550 A C N de Magalhies and J W Essam 

In a previous paper on the Potts model (de Magalhies and Essam 1988, hereafter 
referred to as P F ~ )  we presented a more efficient recursive algorithm than the BCM. 
This algorithm was based on combinatorial formulae conjectured by Tsallis (1988), 
the proofs of which were given in P F ~  through the use of flow polynomials (Tutte 1954, 
1984). The connections between these graph theoretic polynomials and the Potts model 
were presented in Essam and Tsallis (1986, hereafter referred to as PFl) and 
de Magalhles and Essam (1986, hereafter referred to as P F ~ )  (see also Wu (1988) for 
a less formal derivation of some of these connections). The algorithm of P F ~  is known 
as the ‘subgraph break-collapse method’ (SBCM) and therein the Potts cluster is 
represented by a graph G, the vertices of which are the atoms; the occurrence of an 
edge in G represents a bond, or interaction, between the corresponding atoms. A 
graph with many vertices requires a prohibitive amount of computer time to calculate 
its partition function and correlation functions directly as a sum over states. The BCM 

and SBCM provide alternative and more efficient ways of calculating these functions. 
In both of these recursive methods, the above-mentioned functions for a graph G are 
expressed in terms of those for the ‘broken’ (deleted) and ‘collapsed’ (contracted) 
graphs. These are obtained from G by deleting and contracting, respectively, a chosen 
edge e. The extension of the techniques from the Potts model to the Z(A)  model 
involves other graphs besides the broken and collapsed graphs. In the BCM these extra 
graphs are the ‘precollapsed’ graphs (in which the edge e is precollapsed), while in 
the SBCM they are the graphs with fixed flows on the edge e. Such an edge will be 
referred to as a ‘frozen edge’. Here we interpret the precollapsed bonds in terms of 
flows and derive all equations necessary to extend the algorithm of P F ~  to the general 
Z ( A )  model. From these equations, which we call ‘graph reduction equations’, we 
derive an extension of the formulae which appear in the BCM of Mariz and co-workers. 
We argue that our algorithm is more efficient than the BCM. One of the reasons for 
this is the fact that the use of frozen edges, rather than precollapsed edges, reduces 
the depth of recursion since the number of frozen edges can never be more than the 
number of independent cycles in the graph. 

In § 2 we first summarise a previous result (Biggs 1976, 1977) in which the partition 
function of the Z ( A )  model is expressed as a sum over mod-A flows, and then extend 
it to the correlation function. In § 3 we derive the graph reduction equations of the 
SBCM. In 0 4 we present the SBCM algorithm and an extension of the BCM formulae. 
We also illustrate the SBCM by an example for Z(4)  and compare it with the BCM. 
Finally, the conclusions are presented in 0 5 .  

2. The flow vector and correlation function 

2.1. The model 

We consider a Z(A)  cluster represented by graph G with vertex set V and edge set E. 
With each vertex i of V is associated a state variable n, which takes on the A integer 
values, 0 , .  . . , A - 1. The Hamiltonian is given (Alcaraz and Koberle 1980, 1981) by 

where the edge e has vertices i and j and n, - nj is calculated mod A. The sum over 
edges in (2.1) includes all interacting pairs of atoms and the interaction may depend 
on e so that, for example, lattice models with anisotropic couplings are included. The 
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pair interaction energy is independent of the ordering of i and j so that 

h,(A -a )=h , (a ) .  (2.2) 

It follows from (2.2) that for A 5 2 there are only (1 + 1 )  distinct values of the energy 
of interaction between a given pair of atoms, where = [A/2] is the integer part of A/2. 

The following are important special cases of (2.1), the Potts model: 

( 2 . 3 ~ )  

and the clock model: 

h,(n, - n,) = - K ,  cos[27r(n, - n , ) / A ]  (2.36) 

where Ke = PJ,, with J ,  being the coupling constant between the spins on vertices i 
and j ,  is positive for ferromagnets. 

2.2. The partition function 

A theorem of Biggs (1976, 1977) concerning the partition function Z ( G ) ,  which he 
refers to as algebraic duality, may be written in the form 

where v is the number of vertices and E is the number of edges in G. Az, is the partition 
function of the edge e in isolation, where z, is given by 

A - 1  

z e =  C exp(-he(a)) 
a = O  

and D ( G )  is the following generating function for flows: 

Here the function &(a)  is the component a of the A-dimensional vector transmissivity 
re (Alcaraz and Tsallis 1982) for edge e defined by 

1 A - 1  

Ze P = O  
f e ( a )  =- C exp@Tiap/A) exp(-he(P)) (CY =O, 1 , .  . . , A - 1) (2.7) 

and cp(e) is the value of the flow Q on the edge e. A flow is a function defined on the 
edge set E which assigns an integer value, in the range 0,. . , , A - 1,  to each edge, 
subject to a conservation condition at each vertex (see, for example, PFI) .  The 
conservation condition may be expressed as follows. Each edge is given an arbitrary 
directing and an incidence matrix S is defined for j E  V and e €  E by 

if e is directed into j 
if e is directed out of j 
if j is not a vertex of e. 

s. Je = r;' - 1  
0 

We say that Q is a flow on G (i.e. cp E F (  G)) if for each j E V, 

a d A =  1 SjeQ(e)=O mod A (2.9) 
e c E  

i.e. the signed sum of the flows at each vertex is zero mod A. 



2552 A C N de Magalhies and J W Essam 

We note that it follows from (2.2) and (2.7) that 

t,( A - o ) = ?,(a) (2.10) 

and that t , (O)  = 1. For the case of the Potts model ?,(a), for a # 0, is independent of 
a and is given by (2.2) of P F ~ .  Also in this case (2.6) reduces to (2.7) of P F ~ .  

2.3. The correlation function 

Now let us extend Bigg's result to pair correlation functions. Such a function will 
normally be the thermal average of some function f ( n ,  - n2) where, as usual, the 
difference of the state variables n , ,  n2,  for arbitrarily chosen vertices 1 and 2, is 
calculated mod A. The special vertices 1 and 2 are known as roots of the graph. Making 
a Fourier decomposition off  gives 

(2.1 1) 

where 

Tu(l ,  2; G )  = (exp[-277ia(nI- n l ) / A l ) t h e m a l  

1 A - 1  A - 1  

- -- - c ... exp[-2.rria(n,-n2)/A] n exp[-h,(ni-nj)]. (2.12) 
Z ( G )  n , = O  n , = ~  e6 E 

This definition, together with (2.2), implies that 

TA-u(l, 2; G )  = Tm(l,  2; G ) .  (2.13) 
In PFi the pair correlation function of the Potts model (given by the thermal average 

of s1 - s2) is related to the equivalent transmissivity t;q(G). This relation may be 
recovered as an example of (2.11) and (2.12) by letting 

f (n , -n2 )=s ,  s2=A8(n,-n2)-1 (2.14) 

in which case TI( 1,2, G) = T2( 1,2, G) = . . . = TA-l( 1,2, G) = t;:( G) and To( 1,2, G) = 1 
(see (2.22) below). 

We now extend (2.6) in order to express Tu(l, 2; G) in terms of flow generating 
functions. Inverting (2.7) gives 

z, A - 1  

A p = o  
exp[-h,(n, - nj)] =- 1 exp[-2riP(ni - nj)/A]t,(/3) (2.15) 

and hence 

(2.16) 
where q(  e)  is the value of P on edge e, CP is the set of all functions on E with values 
in the range 0,. . . , A - 1, and 8n(e) = ni - nj. Now using lemma 1 of Biggs (1976), 
namely 

(2.17) 

where aq( j )  is defined in (2.9) and combining it with (2.4), (2.12) and (2.16) we obtain 

( 2 . 1 8 ~ ~ )  Tu(l ,  2; G) = X ( 1 , 2 ;  G)ID(G) 
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where 

Nu(1,2;G)=A-” me0 c n , = 0  c . . .  n,=O c e x p [ y ( ( n , - n , ) a -  / E  1 V n , a ~ ( j ) ) ]  e t E  n te(P(e)). 

(2.18b) 

Using a well known property of the A roots of unity, the sum over n, yields a factor 
zero unless 

A - 1  A - I  

i f i = 1  
i f i = 2  
otherwise. 

(2.19) 

This may be expressed by saying that the flow is conserved at every non-rooted vertex 
and that there is a net external flow a entering at root 1 and leaving at root 2. A flow 
which satisfies (2.19) will be called a rooted a-flow. The set of such flows will be 
denoted by Fu( G) and hence 

(2.20) 

We will call N (  1,2; G)  = { N u (  1,2; G), a = 0, 1 ,  . . . , A - 1) the flow vector, although 
strictly speaking each of its components is a flow generating function for rooted a-flows. 
Comparison between (2.20) and (2.6) shows that D(G)  = No(l, 2; G)  and we note that 
( 2 . 1 8 ~ )  and (2.13) imply that 

NA-u( l ,2 ;  G ) = N u ( 1 , 2 ;  G) .  (2.21) 

For the Potts model (2.20) reduces, for a # 0, to (see proof in the appendix) 

N1(1,2; G)  = N*(l, 2; G) = .  . .=  NA-i(l, 2; G) N,,(G) 
(2.22) 

which is (4.3) of PFi. Here F,,(A, G’) is the two-rooted flow polynomial defined in mi. 

In PFi it was shown that the correlation function for a two-rooted Potts cluster is 
proportional to the transmissivity of a single effective edge with Hamiltonian defined 
in terms of a partial trace over the internal spins (see (3 .15)  of P F i ) .  We now extend 
this result to the Z ( A )  model. Following the derivation of (2 .18b) we can show that 
the sum of the left-hand side of equation (2.16) over all n except n ,  and n2 (denoted 
below by Tr‘) depends only on the difference n ,  - n 2 .  It is therefore possible to define 
the equivalent Hamiltonian heq( n ,  - n 2 )  by 

Tr’( exp ( - 1 he( ni - nj))) = C exp[ -heq( n ,  - n , ) ]  
e E  E 

(2.23) 

where C is a constant. Carrying out the further sum over n ,  and n, with and without 
the factor exp[-2.ni(nI - n 2 ) a / A ]  and taking the ratio of the results gives, using (2.7) 
and (2.12), 

Ta(192; G ) =  t e t r ( a )  (2.24) 

where t e f i (a)  is the component a of the vector transmissivity of a single pair of atoms 
1 and 2 interacting with Hamiltonian he , (n ,  - n 2 ) .  We therefore call T(1,2; G)  = 
{Na( l ,  2; G)/N,,(l, 2; G),  a = 0, 1 , .  . . , A - 1) the equivalent vector transmissivity 
between the roots 1 and 2 of G. For Z(4),  T(1,2; G)  is the equivalent vector 
transmissivity of Mariz et a1 (1985) which they denote by G. 
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3. Graph reduction equations of the SBCM 

In this section we extend the equations of the SBCM algorithm from the Potts model 
to the Z(A) model. The major step is to replace the denominator and numerator of 
the equivalent transmissivity of an effective edge used in the Potts model by a flow vector. 

In P F ~ ,  three ways were used to reduce the size of the graph under consideration: 
( a )  splitting into pieces at articulation vertices; ( b )  replacement of subgraphs attached 
at only two vertices by efectiue edges; (c )  removal of (effective) edges using an effective 
break-collapse equation. The first of these was made possible by the fact that the 
correlation function for an articulated graph might be factorised. Secondly, three types 
of subgraph were considered for replacement by an effective edge, namely ( a )  edges 
in series, ( b )  edges in parallel, and (c) subgraphs which were not combinations of 
series and/or parallel edges. The latter was referred to briefly as non-reducible subgraph 
replacement. Finally edge removal might only be carried out at the expense of replacing 
the graph by two further graphs; one in which the edge was deleted and the other in 
which the edge was contracted. It was therefore only used as a last resort when the 
replacement by effective edges was not possible. All three ways were used recursively 
and applied to effective edges and subgraphs containing effective edges as well as 
ordinary edges. The formulae which enabled the reduction processes to be carried out 
were derived for subgraphs, with the understanding that they could be used for effective 
edges since the latter can always be expanded into subgraphs. 

3.1. Splitting of articulated graphs 

Suppose that G is separated into two subgraphs GI and G, by an articulation vertex 
i (see figure 1). There are two cases to consider depending on whether both roots 1 
and 2 are in the same subgraph (figure l ( a ) )  or whether there is one root in G, and 
one root in G, (figure l (b) ) .  In the latter case we suppose that i Z 1 or 2 and the 
graphs are said to be in series. 

3.1.1. Both roots in G,. If i #  1 or 2 ,  by the conservation condition (2.19), any flow 
in F,(G) is such that the signed sum of q ( e )  over the edges of G, incident with i is 
zero, and hence we say that there is no flow between G, and G2.  It follows that any 
flow in Fe( G,) combined with any flow in F (  G2) gives rise to a flow in Fe( G) and 

( U  I ( b l  ( c l  

Figure 1. Pictorial representations of two graphs G, and G2 which share an articulation 
vertex i ( ( a )  and ( b ) )  or which are in parallel (c ) .  The roots 1 and 2 are represented by 
small circles and unrooted vertices by full dots. In ( b )  the graphs G, and G2 are in series. 
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that all such flows may be obtained in this way. The sum in (2.20) may therefore be 
reorganised as follows: 

Na(192; G I =  n te(Vl(e)) n t e (~2(e ) )  (3 .1)  
~ t e F , ( G t )  V Z E F ( G ~ J  -El e a E 2  

and hence, using (2.6) and (2.20), 

Na(132, G)  = Nn(1>2; Gl)D(G2). (3.2) 

If i = 2, there is a net flow of a into i from GI and again using (2.19) there is no 
flow into G2 since tiq(2) = a. Similarly there is no flow into G2 when i = 1 and (3 .1)  
holds in all cases. 

3.1.2. GI and G, are in series. For graphs in series (figure l (6) )  (2.19) implies that 
there is a flow of a from GI to G2 and hence any flow in F,(G) may be composed 
from a flow in F,(G,) and a flow in F,(G2). As in 5 3.1.1 the sum in (2.20) may be 
factorised: 

C n te(Vl(e)) n te (~2(e) )  
e e  €2 

“ (L2;  G ) =  C 
v,EFmiG,)  v2sFa(G2) = E ,  

= Nn(l, i; Gl)Nn(i, 2; G,).  (3.3) 

For two edges in series (3.3) reduces to (9) of Alcaraz and Tsallis (1982). 

3.2. Parallel combination of graphs 

Suppose now that G is composed of two subgraphs GI and G2 having only the root 
vertices 1 and 2 in common (see figure l(c)) .  Suppose that the flow into the edges of 
GI which are incident with root 1 is p, then the flow into G,  is a - p .  Subdividing 
the flows on G according to the value of /3 gives 

which, for the Potts model, reduce to ( 4 . 1 4 ~ )  and (4.146) of P F ~  in the respect.:e cases 
of a # 0 and a = 0. 

Equation (3.4) has the form of a convolution and hence the discrete Fourier 
transform: 

A - 1  

f iD(l ,  2; G)  = exp(2rriap/A)Na(1, 2; G) (3.5) 
LI = O  

may be factorised as 

Gp(l, 2; G)  = fip(l ,  2; GI)T?@(l, 2; G2). (3.6) 
The N, may be polynomials in several variables and the product of two of these 
polynomials is usually the most time-consuming operation in the determination of 
Np( l ,  2; G).  If so, then taking the Fourier transform, using the product rule (3.6) and 
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then inverting is more efficient than the direct convolution. The advantage of the 
transform method increases with the number of graphs in parallel; if there are n such 
graphs then 

n 

f i p ( l ,  2 ;  G )  = n f i p ( l ,  2 ;  Gk). 
k = l  

(3 .7 )  

For the Potts model, f i 0  is the X of P F ~  (4 .15c) ,  fi, is Y (4 .15d)  and the inversion 
of (3 .7)  leads for p = 0 and p # 0 to the respective equations ( 4 . 1 5 ~ )  and (4 .15b)  of 
P F ~ .  In the case that G is the single edge [ l ,  21 we note that f i p / A  is equal to the 
probability P ( ~ ’  defined by Alcaraz and Tsallis (1982) and that f ip/f io is their r ( p ) D ,  
i.e. the dual variable of r ( p ) .  For a pair of edges in parallel (3 .6 )  leads to ( 1 1 )  of 
Alcaraz and Tsallis (1982).  

3.3. Replacement of a subgraph by an eflective edge 

We now consider a generalisation of the parallel combination formula which allows 
the size of a graph to be reduced by replacing a subgraph by a single edge. In order 
for this to be possible G must be the union of two subgraphs H and L which have 
only two vertices i and j in common. Furthermore, both of the root points must be 
in H (see figure 2 )  with the possibility that i and/or j are rooted. The case when both 
i and j are rooted is the parallel combination above. In general the flows in F, (G) 
may again be subdivided, but this time, according to the flow p into L at i (and out 
at j ) ,  by which we mean the signed sum of p ( e )  over the edges of L incident with j. 
By the conservation condition this implies an additional flow into H at j (and out at 
i). The generalisation of (3 .4 )  is therefore 

A - 1  

with 

(3 .8b )  

I 

a 

a 

i 
Figure 2. Pictorial representation of a two-reducible graph G = L U H with the roots 1 and 
2 in H and subjected to an external flow (I in at 1 and out at 2. A net flow p goes from 
H to L at i and from L to H at j .  Each graph is represented by a half-moon shape. 
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where F,,(H) is the set of mod-A flows on H with an external flow CY in at 1 and out 
at 2 and /3 in at j and out at i. If i = 1, the net flow in H at the common vertex is 
CY - p and if, in addition j = 2, then there is net flow in H of CY - p out at 2, in agreement 
with (3.4). 

The sum over p in ( 3 . 8 ~ )  followed by the sum over rp in ( 3 . 8 6 )  may be replaced 
by a single sum over flows in F,(H U e L ) ,  where eL is an effective edge replacing the 
subgraph L and having flow vector equal to the flow vector of L. This result may be 
summarised by 

N,(1,2; G ) = N , ( 1 , 2 ; H u e L ) .  (3.9) 

This replacement may be repeated as long as there are further subgraphs which satisfy 
the above conditions on L so that the flow vector of G may be equal to that of a graph 
with several effective edges. The subgraph selected for substitution may itself contain 
effective edges. Figure 3 shows an example of successive replacements. 

A A 

2 2 

Figure 3. An example of successive replacements of a subgraph by an effective edge carried 
out in the application of the SBCM algorithm. Step ( a )  shows a non-reducible subgraph 
replacement. I n  ( b )  and ( d )  ( ( c i  and ( e ) )  two effective edges in series (in parallel) are 
replaced by a new effective edge. 

Equation (3.9) could also be obtained by performing a partial trace over the internal 
vertices of L as in the derivation of (2.24). Our use of effective edges here is consistent 
with that in Q 2 since (2.24) may be rederived by replacing H by a pair of isolated 
root points. 

The simplest case of subgraph replacement is when L consists of a pair of edges 
in series. These edges may or may not be effective but in any case it  follows from 
( 3 . 3 )  that N p (  i, j ;  L )  may be calculated by multiplying the p components of the flow 
vectors of the two edges. Similarly, when L is the parallel combination of two (effective) 
edges the equivalent flow vector is obtained using the Fourier transform technique of 
§ 3.2. A replacement which is made when no series or parallel combination of edges 
exists will be called, as in P F ~ ,  a non-reducible subgraph replacement. In this case the 
calculation of N p ( i , j ;  L )  is a subproblem of the same type as the calculation of 
N,(l, 2;  G), which is one reason why the SBCM is recursive. 

3.4. Effective break-collapse equation 

When G is such that no further subgraph replacements may be made then further 
reduction methods must be considered. In the case of the Potts model a formula 
known as the effective break-collapse equation was used (see P F ~ ) .  This will now be 
rederived and extended to the Z ( A  ) model. Let f be an edge of G, possibly effective, 
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and subdivide the flows in F,( G) according to the flow /3 = cp( f )  in$ Definition (2.20) 
gives 

(3.10) 

where Nap( 1,2; f; G) is the generating function of the flows on G with external flow 
a in at 1 and out at 2 and a fixed flow /3 in the edge f: We call such an edge f a 
frozen edge. Observe that a fixed flow p from i to j in the edge f = [ i , j ]  is equivalent 
to an external flow /3 in at j and out at i with f deleted. Therefore Nup(l, 2;f; G) is 
equal to Nap(l, 2; j ,  i ;  H )  in (3.8), where H is the ‘broken graph’ G j  obtained from 
G by deleting the edge f: If /3 = 0 then 

(3.1 1 a )  Nao(1,2;f; G)=Na(1,2; G;) 
and in particular 

Noo( 1,2; G)  = D( G;). (3.11b) 

I f f  is the edge [ i ,  j ]  of G we denote by G; the ‘collapsed graph’ obtained from G,b 
by identifying the vertices i and j .  The flows on Gr may be obtained from those on 
G by restriction to the edge set E\f and, hence, the generating function for these 
flows may be found by setting tr(/3) = 1 in (3.10), i.e. 

A - I  

(3.12) 

Therefore to contract an edge is equivalent to summing over all possible flows for this 
frozen edge. 

The effective break-collapse equations for the models considered below follow 
from (3.10) using (3.11) and (3.12). 

3.4.1. The A-state Potts model. For the Potts model, i f f  is an effective edge then 
t,(O) = De, and for p > 0, r f ( p )  = Neff (the same for all O <  p < A ) .  Thus in this case 
all components of the flow vector are determined by the flow vectors for the broken 
and collapsed graphs. From (3.10) and (3.11a) we obtain 

3.4.2. The Z(4) model. For the Z(4)  model, because of the symmetry condition (2.21), 
the flow vector of an effective edge can have at most three different components: 

Neli=(Defi, N l e f f r  NZeffr NIeff). 
Equation (3.10) and (3 .11~)  now yield 

Na(192; G) = DefiNa (192; G,S ) + N1ed Na1(1* 2; f ;  G) + Na3(1,2; f; GI1 

+ NzefiNa2(1> 2 ; f ;  G) 
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(3.15)  

where the third term did not exist for the Potts model. Thus, in addition to the broken 
and collapsed graphs required for the Potts model we must also consider the graph G 
with the chosen edge frozen with a fixed flow of 2 .  

3.4.3. The Z(A) model. The extension of (3 .15)  to general A may be obtained by 
subtracting tf(l) times (3 .12)  from (3.10). Writing t r ( p )  = Npeff we have, for A S4,  

Nu (1,2; G) = (Deff- NleR) Nu(192; G ;  + NleffNu (192; G;) 

(3.16) 

and, in addition to the flow vectors for the broken and collapsed graphs, there are 
now a further A - 3 vectors corresponding to the edge f being frozen with fixed flows 
from 2 to A -2.  

4. SBCM a n d  BCM for t h e  Z(A) model  

In this section we generalise the SBCM algorithm for the Potts model described in P F ~  

to the Z(A) model. Furthermore, we extend to effective edges the formulae which 
appear in the BCM of Mariz and co-workers, and interpret their precollapsed bonds 
in terms of frozen edges. Finally, we illustrate the SBCM using the Wheatstone bridge 
Z(4) cluster and compare it with the results of MTF obtained through their break- 
collapse algorithm. 

4.1. The SBCM algorithm 

The SBCM algorithm of P F ~ ,  for the Potts model, uses a recursive procedure T which 
executes the operations of splitting into pieces and series, parallel and non-reducible 
subgraph replacement as long as possible and then uses the effective break-collapse 
equation. Non-reducible subgraph replacement and use of the effective break-collapse 
equation both require calls to T and hence the need for recursion. The procedure 
terminates when a graph with only two vertices is obtained, at which point the equivalent 
transmissivity is calculated by the parallel rule. Three main changes need to be made 
in order to extend this algorithm to the Z(A)  model. 

(i)  Firstly the effective break-collapse equation must be replaced by (3.16), which 
entails calculating Nap (1,2; f; G )  for /3 = 2 to A - 2. This may be achieved by replacing 
step (d4) of the algorithm by a loop containing a further call to T for the graph G 
with the flow vector for edge f replaced by a constant vector representing the fixed 
flow p. For Z(4) the only fixed flow required is 2 which is represented by the vector 
(0, 0 ,1 ,0 ) .  With this replacement the series and parallel equations work without 
modification. 

(ii) Step ( d l )  of the algorithm selects an (effective) edge for application of the 
effective break-collapse equation. The edge selected must now not be a frozen edge, 
nor must it be an (effective) edge, the flow in which is already determined by the flow 
in the frozen edges together with the conservation condition. 
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(iii) A further terminal step must be added before the terminal condition mentioned 
in (IIe) of P F ~ .  This is used when the current graph has more than two vertices and 
yet no further applications of the effective break-collapse rule are necessary since the 
flow in all (effective) edges is already determined by the flows on the frozen edges, 
the external flow and the conservation condition. The component a of the flow vector 
for the graph is now determined by calculating the implied flow in each (effective) 
edge and taking the product of the appropriate components of the flow vectors for 
these edges. This terminating condition will arise when the number of frozen edges 
is equal to the number of independent cycles in the graph. In this case we call it a 
frozen graph. 

4.2. The BCM for eflective edges 

4.2.1. The Z(4) model. Mariz et a1 (1985) presented for the Z(4)  model a break-collapse 
equation similar to (3.15), but in terms of ordinary edges rather than effective edges. 
In addition to the flow vectors for the broken and collapsed graphs they used a third 
flow vector Nb,( 1,2; G )  defined for the graph G with the chosen edge,f, ‘precollapsed’. 
This was defined to be N,(1,2; G) with t , ( O ) = l ,  t f ( l ) =  t f (3)=0 and tf(2)= 1. 
Interpretation in terms of flows was not mentioned in the MTF paper but from (3.10) 
we obtain 

Nb,( 1,2; G) = Nmo(l, 2; G) + Na2( 1,2; f; G) (4.1) 

from which it follows that Nb,(l, 2; G) is the generating function for internal flows 
having value 0 or 2 on the chosen edge f and subject to an external flow a entering 
at 1 and leaving at 2. Equation (4.1) combined with (3.15) and restricted to ordinary 
edges (i.e. non-effective edges) yields (8) of MTF. Mariz et a1 (1985) applied the latter 
equation recursively until graphs with all edges precollapsed are arrived at. For such 
a graph (which we will denote by Gpr) Ne(  1,2; Gpr) is the number of rooted mod-4 
a flows with the constraint that the flow on any edge must be 0 or 2. Such flows will 
be called even flows. Tsallis (1988) has stated without proof that 

( 4 . 2 ~ )  

(4.2b) 

( 4 . 2 ~ )  

where c( Gpr) is the number of independent cycles in Gpr; ylz( Gpr) is 1 if the roots are 
connected and zero otherwise. We now argue that these results follow directly from 
our interpretation in terms of flows. We first note that, for even flows, d q ( i )  is even 
for all i ,  and hence (2.19) can only be satisfied when a is even. Equation ( 4 . 2 ~ )  
therefore follows immediately. Further we note that there is a correspondence (bijec- 
tion) between the even rooted mod-4 2-flows and the unrestricted mod-2 1-flows 
obtained by replacing edges with flow 2 by edges with flow 1. Equation (4.26) follows 
from the fact that the number of unrestricted rooted mod-2 1-flows is 2ciGpr), when the 
roots are connected on Gpr, and 0 otherwise (see PFi ) .  Equation ( 4 . 2 ~ )  results from 
a similar correspondence between even mod-4 flows and unrestricted mod-2 flows. 

4.2.2. The Z(A) model. Using (2.21) we can rearrange (3.16) for a =0, 1 , .  . . , h in the 
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with the superscript c occupying the pth position. N ! b . , ' c . . . b ( l ,  2; G )  is defined (Tsallis 
private communication) as No( 1 ,2 ;  G )  with the chosen edge f being a precollapsed 
edge of type p, i.e. 

i f y = O , p o r A - p  
otherwise. tr(r) = (4 .4)  

Using (3.10) it follows that for p = 2 , 3 , .  . . , 

i V k . , c . . . b ( l , 2 ;  G ) = N a o ( 1 , 2 ;  f ;  G ) + N a , ( 1 , 2 ;  f;  G ) + N a , * - @ ( 1 , 2 ;  f ;  G )  (4 .5)  

where for A even and p = ,412 the last two terms become equal and should be included 
only once. 

Equation (4.3) reduces, when f is an ordinary edge, to the break-collapse equation 
conjectured by Mariz et a1 (1985, 1988) for A = 4  and 6 ,  and by Mariz and Tsallis 
(Tsallis private communication) for a general value of A. In the break-collapse 
algorithm of Mariz and co-workers, (4 .3)  is applied as many times as needed to arrive 
at graphs G,, with all edges precollapsed. But, since G,, can contain, for A > 4, different 
types of precollapsed edges, there are no simple formulae for the components of their 
flow vectors such as the ones for A = 4 (see 4.2).  Their calculation involves the explicit 
enumeration of all mod-A flows which can take the values 0, p or A - p  on each 
precollapsed edge of type p. 

4.3. An illustration of the SBCM for the Z(4) model and comparison with the BCM 

Now let us illustrate the SBCM for the Z ( 4 )  model by calculating the equivalent 
transmissivity of the Wheatstone bridge graph G of figure 4.  The same calculation 
was carried out in MTF using their BCM algorithm and we are therefore able to compare 
the number of steps required by the two algorithms. We note that with the choice 
h ( 0 ) = - K 1 - 2 K 2 ,  h ( l ) =  h ( 3 ) = K 1 + 2 K 2 a n d  h ( 2 ) = 3 K , - 2 K 2 ,  the Hamiltonian (2 .1)  
can be written in terms of two coupled Ising variables as in ( 1 )  of MTF. The trans- 
missivity components t ( 1 )  and t ( 2 )  defined by (2.7),  when expressed in terms of K ,  
and K 2 ,  are seen to be the parameters t ,  and t 2  defined in ( 2 a )  and ( 2 b )  of MTF. We 
shall use their notation in the rest of this section and assume that the vector trans- 
missivity te = ?, the same for all edges. 

Applying (3.15), to graph G in figure 4, with f being the edge e 3 ,  we get for a = 0, 1 ,2 :  

Na ( 1 9 2 ;  G )  = ( 1  - t ~ )  Na (192; Gb) + ti  Ne ( 1 , 2 ,  Gc) + ( t 2  - t i )  Na2( 1 ,2 ;  e 3 ,  G d  ) (4 .6)  

where the graphs Gbr G, and Gd are shown in figure 4. The terms corresponding to 
the deleted graph Gb and contracted graph G, can be easily calculated by using the 
series and parallel equations ( 3 . 3 )  and (3 .4) .  The expressions for the flow vectors for 
these graphs agree with ( 9 a ) - ( 9 j )  of MTF, where their superscripts 66 and cc refer to 
our graphs Gb and G,, respectively. 
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a 

G 

4 Gr 6, Gh 

Figure 4. Graphs generated during the application of the SBCM to the Z(4)  two-rooted 
graph G. Each edge e, is given an arbitrary directing indicated by the arrow. (I represents 
the external flow in at the root 1 and out at the root 2. The barred line indicates a frozen 
edge with flow 2. To each non-frozen edge is associated a vector transmissivity r =  
(1, r , , 1 2 ,  t l ) .  

In order to calculate the last term of (4.6), we apply (3.15) to the graph Gd with 
the edge f chosen to be e , :  

Na2(1,2; e3; G d )  

=(1-fi)Na2(192; e3; G,)+tiNm2(1,2; e3; G,) 

+(f*-t,)Na22(1,2; e39 e , ;  Gg) ( a = O , 1 , 2 )  (4.7) 

where G,, Gf and Gg are shown in figure 4. 
G, and Gg are frozen graphs so that the flows in each edge are determined by the 

flow on the frozen edges together with the external flow a. This yields the results in 
table 1. The flow vector of Gf is obtained by replacing the subgraph Gh by an effective 
edge with flow vector equal to that of an ordinary edge with flow vector ( 1 ,  t i ,  t 2 ,  t l )  
in parallel with a frozen edge with flow 2 whose flow vector is (0, 0, 1 , O ) .  Using (3.4) 

Table 1. Intermediate flow vectors used in the calculation of the flow vector of the graph 
G in figure 4. 

LY=o,2 a = 1 , 3  
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the flow vector of Gh is ( t 2 ,  t , ,  1,  t , )  and that of G, is now easily obtained using the 
series-parallel rules (3.3) and (3.4). The result is given in table 1 along with that for 
Gd obtained by substitution in (4.7). 

Finally using (9a)-(9f) of MTF with the result for Gd in (4.6) leads to 

D ( G )  = 1+4t:+2t:+2t:+ t;+4t:t:+2t:t2 

NI( 1,2; G) = 2t:( 1 + t ,  + 3t:+ 2t, t 2 +  t ,  1:) 

and 

N2(1,2; G ) = 2 ( t : + t : + 4 t : t 2 + t ~ + t : t 2 )  

( 4 . 8 ~ )  

(4.8b) 

( 4 . 8 ~ )  

which agree with ( 6 )  and ( 7 )  of MTF when the latter are specialised to the isotropic case. 
Notice that combining (4,1), the result for Gd and (9a)-(9c) of MTF we recover 

their expressions (9g)-(9i) for Nb,’(l, 2; G) (a = 0 , 1 , 2 )  as expected. In the case of 
the Potts model ( t ,  = t 2 )  (4.8) reproduce (5 )  of Tsallis and Levy (1981). It is worthwhile 
stressing that the application of the SBCM to the graph G (figure 4) involved the use 
of the effective break-collapse equation (3 .15 )  twice, which generated five graphs, the 
flow vectors of which were easily computed by the series and parallel equations. On 
the other hand, Mariz et a1 (1985) applied their break-collapse equation five times 
generating eleven graphs which are combinations of series and/or parallel edges. 
Therefore, for the Z(4)  model on the graph G, our method was more efficient than 
the BCM of MTF since it required a smaller number of iterations. 

5. Conclusions 

We have generalised to the Z ( A )  model the subgraph break-collapse method (SBCM) 

of the Potts model which we presented in a previous paper (de Magalhies and Essam 
1988). The essential change is to replace the denominator and numerator (0, N )  of 
the equivalent transmissivity of an effective edge used in the Potts model by a flow 
vector ( N o ,  NI, .  . . , Nh-,). The effective break-collapse equation contains graphs with 
frozen edges having fixed flows in addition to the broken and collapsed graphs which 
appear in the Potts model. Detailed modifications of the SBCM algorithm are given in 
§ 4.1. 

In an alternative algorithm of Mariz and co-workers known as the break-collapse 
method ( BCM),  graphs with precollapsed edges were considered rather than graphs 
with frozen edges. The effective break-collapse equation with frozen edges (3.16) 
generates ( A  - 1 )  flow vectors, while the one with precollapsed edges (4.3) leads to 
[A /2 ]  + 1 flow vectors. Therefore, for A > 4, the BCM generates, in each iteration, less 
flow vectors to be computed than the SBCM. On the other hand, in the BCM more 
iterations are needed, and the determination of the flow vectors for the terminal graphs 
(i.e. graphs with all edges precollapsed) requires the examination of all the mod-A 
flows that can be formed such that the flow on each precollapsed edge of type p is 0, 
p or A -p .  This is an enumeration problem, the computing time for which grows 
exponentially with the number of cycles in the graphs, except in the case of A = 4 for 
which formulae are available (4.2). By comparison, our terminal graphs are frozen 
graphs having a fixed flow and the flow vector is therefore immediately determined 
(see 0 4.1). 
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We have shown by example that, for A = 4, our algorithm takes less steps than the 
BCM of Mariz and co-workers. Taking into account the considerations of the previous 
paragraph, we believe that on balance, even for values of A greater than 4, our algorithm 
is still the most efficient. 
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Appendix. Proof that Na(1,2; C) for a # 0 is independent of a in the case of the 
Potts model 

This result is stated in (2.22). 
In 8 2 of PFi it is shown how one can generate, in the Potts model, all the A c ( G )  

( c (  G) is the number of independent cycles in G) mod-A flows in a graph G. For this, 
one chooses a spanning tree T on G. Each edge not in T defines an independent cycle 
formed by the chosen edge together with the unique path in T which joins the endpoints 
of the edge. The primitive flows in the set of cycles so formed provides a basis in the 
cycle space of G. For example, for the graph G of figure 4, if we choose the spanning 
tree drawn in figure 5 ( a ) ,  then we obtain the independent cycles C, and C2 shown in 
figure 5(  b) and (c), respectively. All possible mod-A flows can be generated by assigning 
the values 0, 1, . . . , A - 1 to the strength fl of the flow in each one of these cycles (the 
strength of the flow may be taken as the value of the flow on the edge of the cycle not 
in T since this occurs in exactly one of the independent cycles). 

Let us now suppose that the roots 1 and 2 of G are connected (i.e. y12( G) = l ) ,  
otherwise N a ( l ,  2; G) is zero. In order to generate the rooted a-flows (a = 1,2, .  . . , 
A - 1) we now add to each of the above A c ( G )  unrooted flows, a flow having value a 
on the unique path 6 in 7 from 1 to 2 and zero on all other edges. (Figure 5 ( d )  shows 

1 1 

2 2 

T c, c2 e 

101 ( b )  I C 1  I d )  

Figure 5. An arbitrary spanning tree 7 (see ( a ) )  of the graph G (figure 4) and its 
corresponding independent cycles C, ( b )  and C, ( c ) .  1; indicates the strength of the flow 
in each cycle C, ( i  = 1,2). The path 0 which connects the roots is shown in (d). 
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such a path for the forest drawn in figure 5 ( a ) . )  This will generate, for any fixed a, 
all the rooted a-flows which occur in the sum defining N,( 1,2 ;  G) without duplication 
because of the independence of the cycles. Although, for any values of a, and a2 # a, 
(a i  = 1,2, .  . . , A - l) ,  the rooted a,-flows are different from the rooted a2-fl0ws, the 
number of flows is equal to A c ( G )  in both cases. The total number of rooted a-flows 
is therefore independent of a. 

We now argue that the number F‘,”;(A, G’) of proper rooted a-flows (flows which 
are non-zero on every edge) on any partial graph G‘ of G is also independent of a. 
This was implicitly assumed in PFI where the number of such flows was denoted by 
FI2(A, G). For yIz(G’) # O  let us partition the total number Ac(G’ )  of rooted a-flows 
(proper and improper) on G‘ according to the subset of edges on which they are proper 
(non-zero), which gives for any G’E G: 

yI2( G’)A c ( G ”  = 2 F:”;(A, G”) 
E “ & € ’  

where the factor yI2(G’) has been included on the left since the number of a-flows is 
zero when the roots are not connected on G’. In the latter circumstance the right-hand 
side is also zero since the number of proper flows is zero on any subgraph of G’. The 
above equation may be inverted (Rota 1964) to yield 

E”G E ’  

Since the right-hand side of (A2) is independent of a, it follows that 

F\i)(A, G’) = F‘,;’(A, G‘) = ,  . . = F\i-’)(A, G’) = F,,(A, G’). (A31 
On the other hand, (2.20) particularised for the Potts model gives, for a = 

1,2  , . . . ,  A - 1 ,  

N,(1,2; G ) =  F:”;(A, G’) n t,. 
G’G G e €  E ’  

The combination of (A3) and (A4) shows that the generating function Ne( 1,2; G) for 
the mod-A flows subjected to a fixed non-zero external flow a is independent of a in 
the case of the Potts model (2.22). 
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